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ABSTRACT

The ability to determine the structural dynamics of space-
based platforms from ground-based radar resolved Doppler
measurements will aid in the study of control/structure
interaction. The Naval Research Laboratory and Lincoln
Laboratory conducted an experiment to determine the
feasibility of this method. To accomplish this experiment the
LACE satellite was equipped with retroreflectors and the
ground-based Firepond laser radar facility was employed.
Vibrational information is found from the difference between

the reflected Doppler frequencies of the retroreflectors. The
.method of extracting the Doppler separation was to obtain the
power spectrum of the heterodyne signal envelope. A pulse-by-
pulse processing of the data yields the Doppler separation
history over time. Due to a relatively 1large amount of
clutter in the processed data, a filtering mechanism was
employed. The histogram technique is the current filtering-
based method employed to obtain a Doppler separation history.
This thesis addresses the implementation of the Kalman filter
algorithm in conjunction with the Rauch-Tung-Striebel fixed-
interval optimal smoother algorithm to perform this filtering
task. The Kalman smoother filtering based method of processing
the data produced superior results when compared with the

histogram filtering based method.
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I. INTRODUCTION

Control/structure interaction (CSI) is the interaction
between control systems and the platform or the structural
appendages. The problem of control/structure interaction is
of great interest in the development of new space-based
platforms. There are unique problems associated with the
ground-based testing of structures designed for weightless
environments. In strong gravitational fields spaced-based
platforms exhibit different structural characteristics than
those found in a weightless environment. This presents
problems in developing models to simulate the structural
dynamics based on data obtained from ground level
experimentation. An ideal way to develop accurate models using
experimental data is to obtain the data while the platform is
in orbit. There are various methods that could be utilized to
accomplish this task. A method that does not involve
telemetric 1links or sophisticated electronic hardware
installed on the platform is remote ground-based Doppler
resolved measurements. These ground-based Doppler resolved
measurements will then be used to analyze the structural
dynamics of the platform. The Naval Research Laboratory [Ref.
1] and Lincoln Laboratory [Ref. 2] have been sponsoring a
series of experiments to determine the feasibility of using

the ground-based Doppler resolved measurement approach.




To accomplish this study, the Laser Atmospheric
Compensated Experiment (LACE) Satellite (object number 20496)
was equipped with three germanium IR retroreflectors prior to
launch. These IR retroreflectors were located on the forward

boom, trailing boom, and body of the satellite as indicated in

Figure 1.
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Figure 1. LACE Spacecraft (Fig la from Ref. 1]

The retroreflectors are then illuminated with the ground-
based Firepond laser radar as depicted in Figure 2. The

Firepond is a coherent narrowband 10.6 micrometer laser radar
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Figure 2. Primary Experiment [Fig 1b from Ref. 1]

facility. The reflected signals from the satellite contained
Doppler frequency components proportional to the relative
velocity of the germanium retroreflectors projected along the
radar line-of-sight. The Doppler separation is the difference
between the Doppler frequencies of the retroreflectors. The
procedure employed in the extraction of this Doppler
separation from the reflected signal consisted of obtaining
the power spectrum of the heterodyne signal envelope. This
method greatly reduced the tolerance requirement of the
equipment and calculations needed to extract the Doppler

separation data from the measurements.




One major drawback to this method is that noise rejection
for this system is poor. The Doppler separation history
obtained from the pulse-by-pulse processing had a significant
amount of clutter. Lincoln Laboratory used a histogram
filtering based technique for further noise rejection to
obtain a Doppler separation history. Another approach to this
problem, explored in the following chapters, will consist of
the use of a Kalman Filter in conjunction with the
Rauch-Tung-~-Striebel fixed interval optimal smoother. The
Kalman filter is used to estimate the Doppler frequency and
control a dynamic tracking window. This method of extracting
the information components from the data showed a remarkable
improvement in the resolution of the LACE satellite's Doppler
separation history over the histogram filtering-based
technique.

The basic theory and the equations used in the LACE
signal processing are discussed in the second chapter. 1In
Chapter III the Kalman filter equations and performance
characteristics are discussed. The Rauch-Tung-Striebel fixed
interval smoother is discussed in Chapter IV. The remaining
two chapters are devoted to the description of how the Kalman
filter and the Rauch-Tung-Striebel fixed interval optimal
smoother were utilized in this application and the results

obtained.




A. THE LACE DYNAMICS8 EXPERIMENT

Lincoln Laboratory discusses the experiment and the
procedures employed for the analysis of the narrowband IR
measurements obtained for the 13 and 18 July 1990 [Ref. 2]. On
both days, the LACE satellite's configuration had the leading
boom's extension at 4.6 meters (15 feet) and the trailing
buonm's extension at 46 meters (150 feet). This configuration
had been set up for a significant time prior to the
illumination to eliminate any vibrational modes that might
have been excited by the boom's movement. On both tracking
runs, the Firepond laser radar had a peak transmit power of
780 watts, a pulse duration of 1.5 milliseconds, and a pulse
repetition frequency (PRF) of 62.5 Hz. The maximum elevation
that the LACE satellite achieved relative to the Firepond
laser radar site on 13 July was 82 degrees and on 18 July was
77 degrees. Due to the transmission beam's footprint of 12
meters at the minimum range of 547 kilometers, only the
leading boom's retroreflector and body's retroreflector were
illuminated.

The procedure that was used in the analysis of the
received data first consisted of digitizing 3.4 milliseconds
of the in-phase and quadrature (IQ) data at 1.2 MHz (generating
4080 complex IQ samples). These complex IQ samples were then
squared to yield the IQ envelope as shown in Figure 3. This
figure shows the first radar return obtained from the tape for

18 July 1990. The power spectral density from the IQ envelope




was then obtained. Figure 4 depicts the power spectral
density of Figure 3. Observation of this radar return
indicates a nominal 12 kHz Doppler separation.

The Doppler separaticn history obtained from the pulse-~
by-pulse processing had a significant amount of clutter.
Consequently, a filtering-based technique had to be employed

to extract the information component from the processed data.

RELATIVE MAGNITUDE

RELATIVE TIME (ms)

Figure 3. LACE IQ Envelope, GMT DAY 200, 7603.875
Seconds After Midnight
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Figure 4. Power Spectrum of IQ Envelope, GMT DAY 200,
7603.875 Seconds After Midnight
This filtering-based technique consisted of taking the
maximum value of a 2 second (125 point) moving histogram to
determine the most likely Doppler separation track. Figure 5
for 13 July 1990 and Figure 6 for 18 July 1990 illustrates the
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results obtained by using this method. In analyzing Figures 5
and 6, it is evident that both histories are parabolic in
nature. The biggest difference between the two Doppler
separation histories is the existence of a flatter track for
13 July. Obtaining the power spectrum of these Doppler
separation histories will reveal the frequency components

resulting from the structural dynamics of the craft.
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Figure 5. Doppler Separation, GMT DAY 195, 2 Second Iteration
[Fig 7a from Ref. 2]
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II. LACE SIGNAL PROCESSING

LACE Signal Processing refers to the equations and
procedures required to describe the signal processing of the
received signal and the calculation of the power spectrum of
this received signal. This process is represented in Figure 7,
where LO represents the local oscillator and LPF represents
the low pass filter. A/D is the analog to digital converter.
FFT represents the fast Fourier transform. S?(n) is the

squared in-phase component and Sj;(n) is the squared quadrature

s, (n)
LPF |-» A/D | (+)?
cos (w, t) s?(n)
0 I v (&)
PS 2 (k)
.s(_t)t % LO sg(n) FFT | Iol2 |~ Se
sin(w,t) sg(n)
2

LPF |»{ A/D |- (*)

s,(n)

Figure 7. LACE Signal Processing Block Diagram
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component of the signal. The other terms in this figure are
described in Equations (1) through (6). The equations used to
describe the LACE Signal Processing were derived in References
3 and 4.

The signal received from the LACE satellite consisted of
the components from both the forward boom's retroreflector and
the body's retroreflector. Equation (1) is a mathematical

representation of a noise free signal:

s(t) =a,cos [ (w,+wgy,) t+d,] +a,cos [ (W +w ;) t+d,] (1)

where the following terms apply to this equation:
s(t)-is the received signal,
a,-is the amplitude of the leading retroreflector,
a,-is the amplitude of the body retroreflector,
w,-is the carrier frequency,

w,, -is the Doppler frequency of the leading
retroreflector,

w4, -is the Doppler frequency from the body
retroreflector,

¢,-is the phase return of the leading retroreflector, and
¢,-is the phase return of the body retroreflector.
This signal is then processed by the laser radar to yield the
in-phase and quadrature components of the signal. The in-phase

and quadrature components are passed through a LPF and an A/D

11



converter. The two resulting signals are described

mathematically by Equations (2) and (3):

s, (n) =%‘-cos (wy,nT+$,) +%cos (W nT+,) (2)

s, (n) =%sin(wdlnr+¢1) +%sin(wd2nT+¢,) (3)

where the following terms apply to these equations:

s;(n)-is the in-phase component and

Sy(n) -is the quadrature component.
The IQ envelope was obtained by adding together the squared
in-phase and squared quadrature components generated by the

radar. This signal is represented by Equation (4):

(af+a22)n+ (a,a,) n
4 2

s (n) = cos [ (0g4-0g) nrd-b,] (4

where the following term applies to this equation:
sZ(n)-is the IQ envelope.

12




Equations (5) and (6) are used to calculate the power spectrum

of the IQ envelope:

(2%
F( ) Ak

N-1
y(k) =Y si(n)e (5)

n=9Q

PSg3 (K) =y (K) y (k) * (8

where the following terms applies to these equation:

y(k)-is the complex signal (Fourier transform of IQ
envelope),

y{(k)*-is the complex conjugate of the complex signal,
N -is the transform length, and

PSgi(k) -is the power spectrum.

This results in one peak located at the Doppler separation

frequency as was indicated in Figure 4.

13




III. KALMAN FILTER

The Kalman filter was developed in 1960 by Dr R. E.
Kalman as an optimal recursive filter for the estimation of a
state vector from measurement data corrupted by noise. It
offered advantages over other filters such as the Wiener
filter in that it reduces the mathematical complexity of the
processing of large data strings. A block diagram of the
Kalman filter is depicted in Figure 8, where DELAY represents
one discrete-time delay. The rest of the terms in this figure

are discussed in Equations (7) through (16).

Z(k+1) @ A o ’(*;) R(k+1|k+1)
+

ELAY)

2 (k|k)

e Fe
Z(k+1|k) X(k+1]k)

Figure 8. Kalman Filter Block Diagram
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The Kalman filter equations are derived in References 5
and 6. It is assumed that the process is time invariant. A
mathematical model of the system is given below. The

discrete-time state equation is represented by Equation (7):

X(k+1) =FX(k) +Gv(k) (7)

The measurement equation is represented by Equation (8):

Z(k+1) =HX(k+1) +Dw(k) (8)

where the following terms apply to the two preceding
equations:

X(k+1) -is the updated state vector,

X(k) -is the state vector,

F -is the state transition matrix,

v(k) -is the discrete time process noise assumed to be a
zero-mean, white, random sequence,

Z(k+1) -is the measurement vector,
H -is the gain through which the output leaves the system,

w(k) -is the discrete time measurement noise assumed to be
a zero-mean, white, random sequence,

G -is the gain through which the process noise enters the
system, and

15




D -is the gain through which the measurement noise enters
the systen.

The equations involved specifically in the Kalman filter
algorithm are discussed by dividing then into the prediction,
innovation, gain and correction parts. In the prediction
section, the conditional mean of the state vector (Equation
9), the conditional state error covariance matrix (Equation
10), and the predicted measurement vector (Equation 11) are

computed:

£ (k+1|k) =FX(k|k) (9)
P(k+1|k) =FP(k|k)FT+GQGT (10)
Z(k+1|k) =HX(k+1|k) (11)

where the following terms apply to these three equations:
X(k+1]|k) -is the conditional state estimate,
X(k|k) -is the previous state estimate,

P(k+1|k) -is the conditional predicted state error
covariance matrix,

Q -is the covariance of the process noise,

16




P(k|k) -is the previous predicted state error covariance
matrix, and

Z(k+1|k) -is the estimated measurement.
The innovation section calculates the error between the
measurement equations and the innovation covariance. Equation
(12) calculates the measurement residual or innovation between

Equations (8) and (11):

e(k+1]k) =Z(k+1) -Z(k+1]|k) (12)

Equation (13) determines the innovation covariance:

S(k+1|k) =HP(k+1|k)HT+DRDT (13)

where the following terms apply to these two equations:
e(k+1|k)-is the innovation or measurement residual,
S(k+1]k)-is the innovation covariance, and
R-is the measurement noise covariance.

The Kalman filer gain or weighting factor is found by Equation

(14):

K(k) =P(k+1|k)HTS(k+1|k)? (14)

17




where:

K(k)-is the Kalman filter gain.
The Kalman gain is the weighting factor that is placed on the
measurement residual and the covariance prediction in the
correction phase. Equation (15) corrects the old estimated

state and the covariance correction is found by Equation (16):

X(k+1|k+1) =X (k+1|k) +K (k) e (k+1]|k) (15)

P(k+1|k+1) =[I-K(k)H]) P(k+1|k) (186)

where the following terms apply to these two equations:
X(k+1]k+1) -is the updated state estimate,

P(k+1lk+1)-is the updated predicted state error
covariance, and

I -is the identity matrix.
The preceding equations are then used recursively in the
discussed order to obtain estimates of the state at a given k.

There are two major factors that can affect the
performance of the Kalman filter (Ref. 7], the first being the
Kalman filter parameters such as process noise covariance,
measurement noise covariance, and the initial conditions.
These parameters are the fine tuning mechanisms of the filter.

18




It is seen in the Kalman filter equations that the gain is
dependent on the prediction covariance and the measurement
noise covariance. The prediction covariance is also dependent
on the process noise covariance. If the process noise
covariance in Equation (10) is increased, the prediction
covariance increases. Therefore, the Kalman filter gain in
Equation (14) can be considered as a trade off between the
covariance of the process noise to the covariance of the
measurement noise. With this in mind, as the process noise
covariance increases, the Kalman filter gain increases and
consequently, the bandwidth increases. This forces a faster
transient response which leads to more noise in the estimates
generated by Equation (11). By decreasing the measurement
noise covariance in Equation (13), the same effect can be
achieved. If the process noise covariance is decreased then
the opposite effect will occur, which means that less noise
will be present in the estimated states. With respect to the
initial conditions chosen, the only part of the algorithm
affected will be the transient part. As more data is processed
the initial conditions fade eventually reaching a steady state
value. By choosing a large prediction covariance more emphasis
will be put on the measurements and less on the model in the
transient phase. The second major factor affecting the Kalman
filter performance is the model type. Since the model is used
to generate the estimated states it should be as close to the

physical phenomenon as possible. If the type of model chosen

19




for a particular process is correct with only time constants
slightly off, some degeneration will occur. On the other hand,
if the system is modeled incorrectly, a model mismatch will
result. A model mismatch can cause the estimate states to
diverge from the actual states. It can be seen through the
preceding discussion of the filter parameters and the choice
of the model, the importance of correct modeling in the
achievement of optimal performance from the Kalman filter

[Ref. 8].

20




IV. FIXED INTERVAL OPTIMAL SMOOTHER

The Rauch-Tung-Striebel fixed interval optimal smoother
was designed to be a post processing algorithm to be used in
conjunction with a Kalman filter. This algorithm will improve
the results obtained from the Kalman filter by utilizing the
future information not available during the Kalman filtering
process. The fixed interval optimal smoothing algorithm
recalculates each estimate generated from the Kalman filter
based on the information obtained for the entire set of data
analyzed. This procedure generates what is called the smoothed
estimates as seen in the block diagram of Figure 9, where the
term ADV represents one discrete-time advance. The other

terms are discussed in Equations (17) and (18).

X(k|k)

X(k+1]k)

X(k|n)
’

o1 A (k) +

X(k+1|n) |

Figure 9. Fixed Interval Optimal Smoother Block Diagram
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The Rauch-Tung-Striebel fixed interval optimal smoothing
algorithm was derived in Reference 5. Equation (17)

calculates a weighting factor:

A(k) =P(k|k) FTP(K+1|k) ! (17)

where:
A(k)-is the smoothing algorithm gain,

F -is the state transitional matrix from the Kalman
filter,

P(k|k) -is the prediction covariance from the Kalman
filter, and '

P(K+1|k) -is the conditional prediction covariance from
the Kalman filter.

This weighting factor does not depend on past gains, just the
conditional prediction error covariance and the previous
prediction error covariance from the Kalman filter for a
particular discrete-time. If more uncertainty exists in the
forward filter, the weighting factor becomes larger. Equation
(18) is the second equation involved in this algorithm which

calculates the smoothed estimates:

X(k|n) =X(k|k) +A(k) [X(k+1|n) -X(k+1]k)] (18)

22




where:
n -is the final time,
X(k|n) -is the smoothed state estimate,
X(k|k) -is the state estimate from the Kalman filter,
.f(k+1[n)-is the previous smoothed state estimate, and
X(k+1|k) -is the conditional state estimate from the
Kalman filter.
The next equation is not involved in the algorithm, but is
useful in determining how well the smoothing is being

accomplished.

P(k|n) =P(k|k) +A(k) [P(k+1|n) -P(k+1|k)]1A(k)T (19)

where:

P(k|n) -is the smoothed state error covariance

P(k+1|n) -is the previous smooth state error covariance
These equations, excluding Equation (19), are used recursively
in the discussed order to obtain the smoothed estimates.

It is seen from the preceding equations that this
algorithm has no performance parameter that can be adjusted.
Consequently, it depends solely on the accuracy of the Kalman
filter's parameters. The gain in Equation (17) is dependent on
the covariance error of the previous and conditional values.
This gain is then applied to the difference between the smooth
estimate calculated for the previous data point and the

23




corresponding predicted value generated by the Kalman filter.
The Kalman filter estimate is then adjusted by this weighted
difference as in Equation (18) [Ref. 9). This means that the
predicted states, corrected states, predicted covariance, and
corrected covariance for each data point must be saved during

the forward processing operation.
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V. KALMAN SMOOTHER APPLIED TO LACE

The Doppler separation history for the LACE satellite is
determined by utilizing the Kalman filter and the
Rauch-Tung-Striebel fixed interval optimal smoother. Numerous
preliminary steps were required to extract the Doppler
separation from each pulse and ultimately obtain the Dcppler
separation history. The data first had to be read from the
tape and converted into data files to be loaded into the
Matlab environment for processing [Ref. 10]. An algorithm had
to be developed to perform the preliminary processing of the
data as discussed in the second chapter. The Kalman filter and
the Rauch-Tung-Striebel fixed interval optimal smoother
algorithms had to be implemented. A dynamic tracking window
controlled by the Kalman filter had to be designed to track
the desired frequency contained in the power spectrum for each
radar pulse. Bad data had to be identified and eliminated
during the processing phase. Adequate plotting routines had
to be developed so that a good visual pulse-by-pulse analysis
of selected data could be performed to ensure that the results
were, in fact, what was expected. The following paragraphs
discuss the previously-mentioned items in more detail with
respect to the subroutines that were developed to perform

these tasks.
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The data received for 13 and 18 July 1990 consisted of
approximately 9200 records per tape (120 seconds of data in
binary form). Only 4500 records from each tape were processed
in order to retain continuity with respect to the amount of
data processed with the histogram filtering based method.
Each record represents one radar pulse, which is 3.4
milliseconds of IQ data digitized at 1.2 MHz. Subroutine
DFSIOC found in the appendix, performs the task of extracting
this information from the tape and coordinating the other
subroutines to process the data. This subroutine enables radar
pulses or records to be read from any specified run time to
any other specified run time by adjusting the skip and count
on the tape drive control line (!rsh srvl "dd if=/dev/nrmto
ibs¥16384 count=100 skip=0 > bin.dat).

Subroutine BIN2INT found in the appendix was developed
using Fortran ([Ref. 11] to convert the binary in-phase,
quadrature, and timing information from the tape into an
integer format capable of being loaded into the Matlab
environment. Fortran was used in this application because
Matlab does not have this conversion capability. The binary
data is converted by BIN2INT, one record (16384 bytes or
characters) at a time, into an integer format. Of the 16384
characters, 1 to 16360 Qharacters contained the IQ data for
the radar pulse, 16361 to 16367 characters contained the
timing information for the radar pulse, and the remaining 18

characters are not used. The storage of the IQ data on the
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tape alternated between a byte of in-phase and a byte of
quadrature data. The timing information was stored in
consecutive nibbles. The IQ information that subroutine
BIN2INT converted is then stored in a data file called
IQ_DAT.dat and the timing information is stored in a data file
called TimDat.dat. These data files are then sequentially
loaded into the Matlab environment.

Once the IQ data was converted into integer format and
loaded into the Matlab environment, the next step was to
process the data. The first, second, and third steps in
subroutine DFSCAL, found in the appendix, performed the
procedure discussed in the second chapter. These steps
consisted of adding together the squared in-phase and squared
quadrature components as in Equation (4) to produce the IQ
envelope. The IQ envelope of a sample radar pulse is plotted
in Figure 3. The conversion from the time domain to the
frequency domain is accomplished by taking the fast Fourier
transform of the IQ envelope and then calculating the power
spectral density as in Equations (5) and (6). The results are
shown in Figure 4 for the sample radar pulse depicted in
Figure 3.

The next step involved tracking the particular frequency
of interest (the Doppler separation) contained in the power
spectrum for each radar pulse. A dynamic tracking window
controlled by a Kalman filter was designed to perform this

function. In the development of the dynamic window, two
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aspects had to be resolved: location and size. The location of
the window was determined by centering it around the Doppler
separation estimate obtained from the Kalman filter. The size
of the window had to be large enough to track the change in
frequency, but small enough to reject unwanted frequencies.
Tracking these unwanted frequencies would cause the window's
location to drift from the desired frequency. Window size
control was achieved by setting the window's size equal to the
prediction state error covariance from the Kalman filter plus
two times the frequency resolution of the fast Fourier
transform. The use of the prediction state error covariance
plus two times the frequency resolution was empirically
determined to be the parameter that produced the best results.
The Doppler separation is then determined by obtaining the
corresponding frequency of the peak magnitude within the
window. This corresponding frequency of the peak magnitude is
entered in Equation (12) of the Kalman filter as the
measurement. The measurement is processed with the Kalman
filter as discussed in the third chapter.

The first obstacle encountered in processing the data was
the clutter mentioned in References 1 and 2. This clutter or
bad data can cause the tracking mechanism in subroutine DFSCAL
to drift from the actual Doppler separation track if not

addressed. Figure 10 was obtained by plotting the peak
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Figure 10. Fixed Window, Unfiltered Data, GMT DAY 195

magnitude within a fixed window from 4 kHz to 14 kHz. Each dot
in this figure represents one radar return that could contain
either the accurate Doppler separation information or the
apparent clutter. In analyzing the power spectrums of selected
radar pulses there exists three distinct types of radar
returns: ones that contained accurate Doppler separation
information; ones that contained accurate Doppler separation
information corrupted by noise; and ones that are just noise
or an extremely weak signal embedded in noise. The IQ envelope
of a sample radar return that contains accurate Doppler
separation information is depicted in Figure 11. Figure 12
shows the power spectrum of this radar return and the dynamic

tracking window. The dashed lines represent the window. The
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solid lines indicate the power spectrum of the IQ envelope.
The dotted iine traces the outline of the power spectrum. The
power spectral density being centered around a single
frequency in Figure 12 is a good indication that this radar
return contains accurate Doppler separation information. A
sample radar return which contains accurate Doppler separation
information corrupted by noise is represented by Figure 13 and
its power spectrum is shown in Figure 14. In this case, the
Kalman filter's filtering mechanism will eliminate any large
deviations from occurring in the Doppler separation history.
The third type of radar return is when there was just noise or
an extremely weak signal embedded in noise. This type is
represented in Figure 15. The power spectrum of this indicates
the presence of noise as seen in Fiqure 16. Comparing Figure
16 to Figure 14, a difference in magnitudes is revealed. This
type of superfluous data is eliminated by placing a magnitude
constraint on the particular frequency of interest within the
dynamic window. The incorporation of the conditional statement
(if MAGD(K+1)<MAGD(K)+1e2! MAGD (K+1) >MAGD(K) -1e2) into
subroutine DFSCAL performs this task. This conditional
statement differentiates between the magnitude of the last
good radar return and the present radar return to determine if
the relative magnitude is within a fixed distance of the last
radar return. If this condition is met, the Kalman filter

algorithm is used as described in the third chapter. On the
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other hand, if this condition is not met, then the estimate of
the Doppler separation frequency is not updated and the
prediction covariance is increased by setting it equal to the
conditional predicted state error covariance. This will cause
the dynamic window to increase in size and place more emphasis
on the next valid measurement within the window.

The next obstacle encountered in the implementation of
the Kalman filter, was determining the type of model best
suited for the data. In developing the model for the Kalman
filter, the histogram-based tracks for 13 and 18 July in the
first chapter were analyzed to determined if a differential
equation could be applied to the trajectory of the LACE
satellite. After examining these figures, the development of
an elaborate model to simulate the parabolic trajectory of the
LACE satellite was virtually impossible to realize. The reason
was due to the different elevations and azimuths the satellite
could incur each time it was tracked. This leads to the
slightly different trajectories as noted earlier with Figures
5 and 6. A very simple model approach was then used. Adequate
results were obtained using a first order model whose state is
the Doppler separation in the frequency domain. Having the
state of the model be a scalar quantity greatly simplifies the
algorithm. To determine the value for the state transition
matrix F, the parabolic nature of the histogram based tracks
were taken into account. This meant that a frequency increase

would occur at the start of a tracking run. After a maximunm
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value was reached during the tracking run, there would occur
a frequency decrease. The only eigenvalue for the F that would
not cause degeneration to occur, is the value one. If an
eigenvalue greater or less than unity is used, the estimated
frequency will diverge either for the increasing Doppler or
the decreasing Doppler, depending on which value was chosen.

When the preliminary processing of the data and the
Kalman filtering had been accomplished, the Doppler separation
estimates were ready to be smoothed. Subroutine DFSBFS found
in the appendix was developed to perform this task. This
subroutine implements the Rauch-Tung-Striebel fixed interval
optimal smoother equations as discussed in the fourth chapter.
Subroutine PLOT4 found in the appendix is utilized to plot the
results obtained from this subroutine.

The final step was to determine the value for the
measurement noise covariance (R), the process noise covariance
(Q), and the initial conditions that would optimize the
processing algorithm. The initial conditions consisted of the
prediction estimate covariance (P(0)), the Doppler separation
estimate (XFREQ (0)), and the relative magnitude of the Doppler
separation (MAGD(0)). Subroutine DFSVAL found in the appendix
is used to initialize the parameters for all the subroutines.
The initial Doppler separation frequency is determined by the
point at which the analysis is started for a particular
tracking run. The first radar return to be processed for 18

July 1990 was depicted in Figure 3. The frequency of 12.012
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kHz obtained from this figure is used to initialize the
Doppler separation estimate for the filter. The prediction
estimate covariance was set to 292,969 Hz, since this was the
frequency resclution obtained. The initial magnitude is
determined to be 100 by checking the beginning data. The
value for the process noise covariance (Q) was varied from
292.969 Hz to 7.324 Hz. The measurement noise covariance (Rr)
was varied between 292.969 Hz and 2929.690 Hz. In empirically
obtaining the optimal values for the process noise covariance
and the measurement noise covariance, they were initially set
at 292.969 Hz. By setting the process noise covariance and the
measurement noise covariance to this value, the Kalman filter
tracked every'deviation no matter how off track they were.
Figure 17 shows this undesirable result. The process noise
covariance was when reduced to 146.485 Hz with the measurement
no:se covariance still set at 292.969 Hz in an attempt to gain
more filtering from the Kalman filter. This showed some
improvement in the noise rejection performance of the filter
as indicated by Figure 18. Increasing the measurement noise
ten times to 2929.960 Hz with the process noise covariance
left at 146.485 Hz vastly improved the performance of the
filter, which is seen in Figure 19. Based upon the previous
results, the process noise covariance was further reduced to
7.324 Hz leaving the measurement noise covariance at 2929.690

Hz. A good track of the Doppler separation history was
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obtained as indicated in Figure 20 for 18 July 1990. Figure 21

shows the Doppler separation history for 13 July 1990.
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VI. CONCLUSION

The results obtained in the previous chapter have
demonstrated the effectiveness of the Kalman filter in
conjunction with the Rauch-Tung-Striebel fixed interval
optimal smoother as a post processing utility in determining
the Doppler separation history from the data. To compare the
effectiveness of the two filtering-based techniques, Figure 22
for 13 July 1990 and Figure 23 for 18 July 1990, were
developed. Figure 22 is the combination of Figures 5 and 21,

where Figure 23 is the combination of Figures 6 and 20.
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In both figures, the dashed lines are the results obtained
from the histogram filtering-based method, the solid lines are
for the method utilized in this thesis, and the dots represent
the unfiltered data. Analysis of these figures demonstrates
that the method used in this thesis of determining the Doppler
separation history for both days is far superior to that of

the histogram filtering based technique.
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APPENDIX
SUBROUTINES DEVELOPED TO PROCESS THE DATA

The following subroutines are designed to function
together with subroutine DFSIOC as the primary subroutine. The
data is read from the tape in equally-sized blocks that are
consecutively processed. The block sizes can vary from 1 to
whatever size the computer is capable of handling. The number
of blocks or groups can be varied from 1 to the amount of data
to be processed. To use this package, the following must
reflect the same values: the number of groups (GRNO) in
subroutines DFSIOC and DFSVAL; the terminal count in the main
loop of BIN2INT and the number of records per group (PSNO) in
DFSVAL:; the count in the tape drive control line of DFSIOC and
the number of records per group (PSNO) in DFSVAL. These
subroutines at present are set up to process 4500 records in
groups of 100 (GRNO=45, PSNO=100).

e DFSIOC

To initiate this subroutine to process the data, just
enter DFSIOC in the Matlab environment. DFSIOC will perform
the task of extracting the information from the tape and
coordinating subroutines DFSVAL, BIN2INT, DFSCAL, DFSBFS,
PLOT3, and PLOT4. The data extracted from the tape is stored
in a temp file called Bin.dat. It loads the data that was
converted (binary to integer) from the temp file (Bin.dat) by
BIN2INT into the Matlab environment for further processing.
PSNO in this subroutine must reflect the same end count as
PSNO in subroutine DFSVAL. In the tape drive control line,
count is the number of records to be read and skip is the
number of records to be passed over. Count must reflect the
same value as PSNO in subroutine DFSVAL. The other options
available are: to plot the data using PLOT3 and PLOT4; to save
the data with the save function.

| SUBROUTINE DFSIOC
dfsval; SCALLS SUBROUTINE DFSVAL
for GRNO=1:1:45 SMAIN LOOF TO PROCESS DATA
irsh srvl] *dd if=/dev/nrmt0 iba=]16384 STAPE DRIVE CONTROL (READS)
count=100 skip=0*" >bin.dat
{bin2int SCALLS SUBROUTINE BIN2INT
lrm /staff/thorngre/bin.dat SCLEARS TEMPORARY DATA FILE
load IQ DAT.dat SLOADS IQ DATA FILE
load TimDAT.dat SLOADS TIMING INFORMATION
TimDAT1=[TimDAT];TimDAT(:,6)]; SSAVES TIMING INFORMATION
DAY=TimDAT(1,1): NSSAVES GMT DAY OF TRACK
dfscal; SCALLS SUBROUTINE DFSCAL
clear IQ_DAT TimDAT SCLEARS UNNECESSARY DATA
end SEND OF THE MAIN LOOP
dfsbfs SCALLS SUBROUTINE DFSBFS
lrsh srvl mt rw SREWINDS TAPE TO BEGINING
plot3; SCALLS SUBROUTINE PLOT3-OPT
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plot4;

ssave DSF.dat DSF -ascii
Ssave XDSF.dat XMFREQ -~ascii
ssave BXDSF.dat BXDSF -ascii

\Asave TimDAT].dat TimDAT] -ascii

ssave DAY.dat DAY -ascii

¢ DFSVAL

SCALLS SUBROUTINE PLOT4-OPT
MASAVES DATA IN ASCII FORMAT

Declares and sets the parameters used in the subroutines

DFSIOC, DFSCAL, PLOT1,

and PLOT4. PSNO is the

number of records in the group (GRNO). These must reflect the
values used in DFSIOC and BIN2INT. Subroutine DFSVAL is called

by subroutine DFSIOC.

L

GRNO=45;

PSNO=100;

RECLN=8160;
Freq=292.969.*%(0:2047);
Time=(0:4079)/(1.2€6);
TimDATI=[};

G=zerog (PSNO*GRNO+1,1);
P=2eros(PSNO*GRNO+1,1);
PP=2zeros (PSNO*GRNO+1,1);
DSF=zeros(PSNO*GRNO+1,1);
DSFW=zeros (PSNO*GRNO+1,1);
XDSF=zeros (PSNO*GRNO+1,1);
XMFREQ=zeros (PSNO*GRNO+1,1);
XFREQ=zeros (PSNO*GRNO+1,1);
BXDSF=zeros (PSNO*GRNO+1,1);
MAGD=zeros (PSNO*GRNO+1,1);
DAY=(1,1);

magfi=(1,1);

freqfi=(1,1);

magdi=(1,1);

freqdi=(1,1);
freqli=(1,1);
frequi=(1,1);

F=[1];

G=[1);

D=[1];

c=(1];

Q=[292.969*0.025);
R=[292.969*%10);
P(l1)=[292.969*1];
MAGD(1l)=[2.5e21);
XFREQ(1)=[292.969*41];

® BIN2INT

SUBROUTINE DFSVAL

SNO OF GROUPS OF PULSES

SNO OF PULSES PER GROUP
SLENGTH OF DATA PER PULSE
SCREATES FREQUENCY VECTOR
SCREATES TIME VECTOR FOR IQ-2
SUNDETERMINED TIMIG VECTOR
SSETS UP KALMAN GAIN VECTOR
SSETS UP COV PRED VECTOR
SSETS UP CON COV PRED VECTOR
SSETS UP DSF FIXED WINDOW VET
SSETS UP DYNAMIC WINDOW VET
ASETS UP ESTIMATED DSF VET
SSETS UP CON EST STATE VET
NSETS UP ESTIMATED STATE VET
SSETS UP SMOOTH EST DSF
ASETS UP MAG VECTOR FOR D.W.
SGMT DAY OF TRACKING RUN
SMAX MAG IN FIXED WINDOW
SINDEX OF MAX FREQ IN F.W.
SNAX MAG IN DYNAMIC WINDOW
SINDEX OF MAX FREQ IN D.W.
SINDEX OF LOWER LIMIT D.W.
SINDEX OF UPPER LIMIT D.W.
STRANSITIONAL STATE MATRIX
SINPUT WEIGHTING FACTOR
SINPUT WEIGHTING FACTOR
SOUTPUT WEIGHTING FACTOR
SPROCESS NOISE COVARIANCE
SMEASUREMENT NOISE COVARIANCE
SINITIAL COV PRED ESTIMATE
SINITIAL MAGNITUDE OF PSD
SINITIAL FREQUENCY ESTIMATE

Has been written in Fortran to convert the binary data
obtained from the tape into integer format. The input format
is in binary byte form from the temp file Bin.dat. There are
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16384 bytes of data in a record of which 16360 bytes are

inphase and quadrature data, 6 bytes are the timing
information, and the rest are not used. There are no
delimiters between values. The output format consists of 16
format for the data and is stored in IQ_DAT.dat. The output
for the timing information is F4.4 format and is stored in
TimDAT.dat. The main loop in this subroutine must specify the
numbers of records that are going to be processed per group
(PSNO) in subroutine DFSVAL. BIN2INT at present is set up to
process 100 records. This subroutine is called by subroutine

DFSIOC.

c SUBROUTINE BINZ2INT
c DECLARES VARIABLES
character*l cdat(16384)
integer*2 jdat(8192)
integer*2 nibbles(0:11)
integer*2 tcdat(0:2)
real day,hour,min,sec,mil,TINE
equivalence (cdat,jdat)
c OPENS THE DATA FILE CALLED ‘BIN.DAT’ FOR DIRECT, UNFORMATTED READ
< AND OUTPUTS TWO FILES CALLED °‘IQ DAT.DAT’ AND ’‘TIMDAT.DAT’.
open(l,file=’'/staff/thorngre/bin.dat’, access=‘direct’,
& recl=16384,form=’unformatted’)
open(2,file='IQ DAT.dat’)
open(3,file='TimDAT.dat’)
c LOOP TO READ DATA INFORMATION AND OUTPUT IT TO A FILE
15 do 60, i=1,100
read(l, rec=i)cdat
do 20, j=1,8192

write(2,1020)jdat(7)
1020 format (i6)
20 continue
c LOOP TO READ TIMING INFORMATION

do 30, k=0,2
tocdat (k)=jdat (8181+k)

30 continue
c LOOP TO CALCULATE TIME FROM TIMING INFORMATION AND OUTPUT IT
c TO A FILE

do 40 1=0,11,4
nibbles(l+0)=and(rshift(tcdat(l/4),12),15)
nibbles(l+l)=and(rshift(tcdat(l/4),8),15)
nibbles(l+2)=and(rshift(tcdat(l/4),4),15)
nibbles(l+3)=and(tcdat(l/4),15)

40 continue
day=nibbles(0)*100+nibbles(l)*10+nibbles(2)
hour=nibbles(3)*10+nibbles(4¢)
min=nibbles(5)*10+nibbles(6)
sec=nibbles(7)*10+nibbles(8)
mil=nibbles(9)*100+nibbles(10)*10+nibbles(11)
time=60*60*hour+60*min+sec+(mil/1000)
write(3,1030)day, hour,min,sec,mil,time

1030 format(fé,1x,£4,1x,£4,1x,£4,1x,£4,1x,£10.4)

60 continue

end
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e DFSCAL

Processes records that contain the inphase and quadrature
data to obtain the IQ envelope, power spectrum of the IQ
envelope, and the estimated Doppler separation history. The
Kalman Filter algorithm is implemented to perform two
functions. The first is to provide control for the dynamic
window's location and size. The second is to provide a good
estimation of the Doppler separation from the measured data.
The conditional statement is used to check the magnitude of
the data. The fixed window in this subroutine provides an
observation of the unfiltered data. The options available in
DFSCAL are to view IQ envelope and the power spectrum of the
IQ envelope subroutine PLOT1 or subroutine PLOT2. This
subroutine is called by DFSIOC.

] SUBROUTINE ODFSCAL
for K=(GRNO*PSNO-PSNO+l):1:(GRNO*PSNO)
IQS_NO=1;
for k=1:2:RECLN
IQS_DAT(IQS_NO)=(IQ DAT(k+(IQS_NO-1) ...
*8192))~2+(IQ _DAT(k+ ...
1+(IQS NO-1)*8192))"2;
IQS_NO=IQS NO+1;
end SEND OF LOOP TO CAL IQ~2
IQS_FFT=fft(IQS_DAT,4096); SCALCULATES FFT OF IQ*2
IQS_PSD=IQS FFT.*conj(IQS_FFT); SCALCULATES POWER SPECTRUM
[magfi freqfi]=max(IQS_PSD(15:49)); SFIXED WINDOW 4RHz AT l14KHz
freqfi=freqfi+lé; SINDEX CORRECTION
DSF(R)=Freq(fregqfi); SDETERMINE DSF FROM INDEX
XMFREQ (K+1)=F*XFREQ(K); SUPDATES ESTIMATED STATE
XDSF (K)=C*XMFREQ(K+1); SCALCULATE ESTIMATED DSF
PP(K)=(F*P(K)*F')+(Gl*Q*Gl’); SUPDATE CON PRED COVARIANCE
G(K)=PP(K)*C’*inv(C* (PP (K)*C’+D*R*D’)); NCALCULATE KALMAN FILTER GAIN
fregli=round((XDSF(R)-PP(K))/292.969); SLOWER INDEX FOR WINDOW
frequizround( ((XDSF(K)+PP(K))/292.969)+2); SUPPER INDEX FOR WINDOW

SLOOP TO CALCULATE DSF/PULSE
SINITIAL COUNTER FOR IQ DAT
SLOOP TO CALCULATE IQ~2

]
\J

[magdi freqdi]=max(IQS PSD(freqli...
:frequi));
freqdi=freqli+freqdi=-1;
DSFW(K)=Freq(freqdi);
MAGD (K+1 )=magdi;
if MAGD(K+1)<MAGD(K)+1e2 |...
MAGD (K+1)>MAGD(K)~1e2,
XFREQ(K+1)=XMFREQ(K+1)+G(K) ...
* (DSFW (R)-XDSF(K));
P(K+l)=(eye(1)=-G(K)*C)*PP(K);
else
XFREQ(K+1)=XMFREQ(K+1);
P(K+1)=PP(K);
DSFW(K)=0;
end
plotl
plot2

end

45

SINDEX MAX MAG WITHIN WINDOW

SINDEX CORRECTION
SDETERMINES FREQ FROM INDEX
SSAVES MAG FOR EACH LOOP
SCONDITIONAL TEST FOR PULSE
SPULSE CONTAINS USEFUL DATA
SUPDATES STATE

SUPDATES COVARIANCE PREDICTION
SPULSE HAS NO USEFUL DATA
SSTATE EQUALS CON EST STATE
NSSET COV PRED TO CON COV PRED
SNO MEASUREMENT OBTAINED

SEND OF CONDITIONAL STATEMENT
SCALLS SUBROUTINE PLOTI-OPT
SCALLS SUBROUTINE PLOT2-OPT
SEND OF LOOP TO CALCULATE DSF




e DFSBFS
Was developed based on the Rauch-Tung-Striebel fixed-

interval optimal smoother algorithm to provide a smoothed
estimate Doppler separation history. This subroutine is called
by DFSIOC.

1Y SUBROUTINE DFSBFS
BXDSF(1:PSNO*GRNO+]1 )=XFREQ(1:PSNO*GRNO+1); SINITIALIZES 1ST VALUE BDSF
for n=PSNO*GRNO:-1:1; SLOOP TO CALCULATE BACKWARDS
A=P(n+l)*F'n(inv(PP(n))); SCALCULATES SMOOTHING GAIN
BXDSF(n)=sXFREQ(n)+(A* (BXDSF(n+l) ... SUPDATS SMOOTH ESTIMATE DSF
~XMFREQ(n+1)));
end ' AEND OF LOOP CAL BACKWARDS
e PLOT1

Plots the IQ envelope for the radar pulse to the monitor.
The option in PLOT1 is to save the plot by using the meta
function. This subroutine is called by DFSCAL.

) SUBROUTINE PLOTI
titlel=(['SECONDS AFTER MIDNIGHT ’,... STIMING INFORMATION HEADER
num2str(TimDAT1(K,1))]}):
title2=(['GMT DAY ’,num2str(DAY)]): ATIMING INFORNATION HEADER
plot(Time(1:4080),I0S DAT(1:4080)),9rid SPLOTS IQ ENVELOPE DATA
title(['LACE IQ ENVELOPE,’,titlel2]}) SPLOT TITLE
text(l,1,titlel,’sc’); SPLOTS TIMING INFORMATION
ylabel ( 'RELATIVE MAGNITUDE'), SPLOTS Y-AXIS LABEL
xlabel ('TIME (ms)’), SPLOTS X-AXIS LABEL
Smeta sxsl SSAVES PLOT-OPTIONAL
® PLOT2

Plots the power spectrum of the IQ envelope and the
dynamic window for the radar pulse to the monitor. The option
in PLOT2 is to save the plot by using the meta function. This
subroutine is called by DFSCAL.

) SUBROUTINE PLOT2
titlel=(['SECONDS AFTER MIDNIGHT ’,... STIMING INFORMATION HEADER
num2str (TimDATI(K,1)}1)?
title2=([’'GMT DAY ’,num2str(DAY)]}): STINING INFORMATION HEADER
plot(Freq(freqli-15:frequi+15),I08 PSD ... \PLOTS OUTLINE PWR SPECTRUM
(freqli~15:frequi+l5),’:r’),hold on SRETAINS PLOT IN MEMORY
YIGRA=0:magi:magi;Y11GRA=magl magl],; NSETS UP DYNAMIC WINDOW VET

X1GRA=Freq(freqli)*(ones(l:length(YIGRA}));
X2GRA=(Freq(frequi)*(ones(l:length(YIGRA)))) 'z
Y2GRA=Freq(freqlli):Freq(frequi)-Freq ...

(freqli):Freq(frequi);
plot (X1GRA,Y1IGRA, ‘--g’ ,X2GRA,YIGRA, '==g"’), SPLOTS SIDES DYNANIC WINDOW
plot(Y2GRA,Y11GRA,'-=-g’), SPLOTS TOP OF DYNAMIC WINDOW
magdis=[zeros(freqli~15:frequi+lS);... \SETS UP POWER SPECTRUM
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IQS _PSD(freqli-15:frequi+l5)...
22zeros(freqli-15:frequi+l5)];

indexs=[Freq(freqli~15:frequi+l%);Freq ...
(freqli-15:frequi+l1$5);Freq(freqgli ...
-15:frequi+l5)]};

magdis={magdis(:)’]}];

indexs=[{indexs(:)‘];

plot(indexs,magdis, ‘~r’),grid SPLOTS POWER SPECTRUM
title(['POWER SPECTRUM OF IQ ENVELOPE,’,title2])
text(l,1,titlel,’sc’); SPLOTS SECONDS AFTER MIDNIGHT
xlabel ('FREQUENCY (KHz)'’), SPLOTS X-AXIS LABEL
ylabel ('RELATIVE MAGNITUDE'), SPLOTS Y-AXIS LABEL

\smeta sxs2 SSAVES PLOT-OPTIONAL

hold off SRELEASES PLOT FROM MEMORY

e PLOT3

Plots the unfiltered data in the fixed window and the
estimated Doppler separation history to the ronitor. The
option in PLOT3 is to save the plot by using the meta
function. This subroutine is called by DFSIOC.

SUBROUTINE PLOT3
title2(['GMT DAY ’,num2str(DAY)]); STIMING INFORMATION HEADER
titled(['Q = ‘,num2str(Q))); SPROCESS NOISE COVARIANCE
title4([’'R = ’,num28tr(R)]); SMEASUREMENT NOISE COV

axis([TimDATI1(1,1) TimDATI1(length(TimDAT!)... SMDETERMINES AXIS FOR PLOT
,1) 0 20000})

plot(TimDATI! ,DSF(1:1length(TimDAT!),1),’.x’,.. .SPLOTS DATA
TimDAT1,XDSF(1:length(TimDAT1),*), '~g’)?

title(['DOPPLER SEPARATION,’,title2]) SPLOTS TITLE
text(2,1,title3, ‘sc’), SPLOTS PROCESS NOISE COV
text(3,1,titled, 'sc’), SPLOTS MEASUREMENT NOISE COV
xlabel (’SECONDS AFTER MIDNIGHT’), SPLOTS X-AXIS LABEL

ylabel ({‘DOPPLER SEPARATION (KHZz)‘), SPLOTS Y-AXIS LABEL

s meta sxsd SSAVES PLOT-OPTIONAL

¢ PLOT4

Plots the smoothed Doppler separation history to the
monitor. The option in PLOT4 is to save the plot by using the
meta function. This subroutine is called by DFSIOC.

) SUBROUTINE PLOT#
title2([‘GMT DAY ’,num2str(DAY)]); \TINING INFORMATION HEADER
title3([’Q = ‘,num2str(Q)]); APROCESS NOISE COVARIANCE
titled4(['R = *,num2str(R)}); ANEASUREMENT NOISE COV

axis([TimDATI(1,1) TimDAT] (length(TimDAT!)... SDETERMINES AXIS FOR PLOT
+1) 0 20000)})

plot (TimDAT! ,BXDSF(1:length(TimDAT1),1),... SPLOTS SMOOTH EST DSF
'er’),grid;

title(['DOPPLER SEPARATION,’,title2}), SPLOTS TITLE
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text(2,1,titlel,’sc’),
text(3,1,titled,’sc’),

xlabel ('SECONDS AFTER MIDNIGHT’),
ylabel ( 'DOPPLER SEPARATION (KHz)'),
% meta sxs4
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SPLOTS PROCESS NOISE cov
SPLOTS MEASUREMENT NOISE cov
SPLOTS X-AXIS LABEL

SPLOTS Y-AXIS LABEL

SSAVES PLOT-OPTIONAL
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